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SOLUTION OF THE PERCUS-YEVICK EQUATION 
FOR HARD SPHEROCYLINDERS: I1 

Dependence of the pair correlation function on the 
elongation 

P. SEVILLA, S .  LAGO*, and P. PADILLA 

Dpto. Quimica Fisica, Fac. Ciencias Quimicas, Univ. Complutense, 
28040 Madrid, Spain. 

(Received 1 March 1990) 

The Percus--Yevick integral equation has been solved for hard spherocylinders, using an algorithm 
introduced in a previous paper. The pair correlation function (PCF) and the direct correlation function 
have been obtained and the dependence of these functions on the elongation as  well on the numerical 
density is presented. Some of the spherical harmonic coefficients corresponding to the PCF are also shown 
and compared with Monte Carlo simulations. The best agreement is obtained for intermediate elongations, 
corresponding to molecules such as CI, and for the first harmonic coefficient. The variation of the P C F  
of selected orientations with density is similar to that of hard spheres. Nevertheless, the variation for each 
orientation with elongation is more complicated trending to the hard sphere limit in different ways. 

KEY WORDS: Monte Carlo simulations, direct correlation function. 

1 INTRODUCTION 

In a preceding paper’, hereafter referred to as I, we have presented an algorithm to 
solve the Ornstein-Zernike (OZ) equation using the Percus-Yevick closure’ for 
systems composed of hard spherocylinders. In these systems, to the difficulty of 
solving the integral equation, the nontrivial computation of the distance between the 
surfaces of spherocylinders is added. Fortunately, we have previously proposed an 
efficient algorithm to overcome this hindrance3 and we have obtained in I numerical 
values of the pair correlation function (PCF) and direct correlation function (DCF) 
of spherocylinders with a ratio cylindrical length/breadth L* = 1. The comparison of 
our results with previous Monte Carlo simulations for some selected orientations 
was possible due to the existence of systematic simulations of Nezbeda4 and Monson 
and Rigby’ for this system. Moreover, Perera and Patey6 have also solved the PY 
equation for hard spherocylinders using a different algorithm. Unfortunately, a direct 
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comparison with our own results is not possible because they have always considered 
case with L* 2 1 but their general conclusions seem to be in agreement with ours. 
However, a lot of interesting relatively simple fluids are composed by linear molecules 
like N,, Cl,, or CO, which have L* < 1. Therefore, we feel that it is important to 
study the behavior of the solution of PY equation for L* < 1 in order to establish 
a firm basis to use this integral equation for more realistic potentials. Unfortunately, 
there are only scarce long simulation runs for determined orientations4 and we have 
preferred to compare our results for the first spherical harmonic coefficients (SHC) 
where more simulations are available', completing them with our own simulations. 
In any case, results for the so-called main orientations' are also reported in order 
to complete the study of the dependence of the PCF on the elongation for each 
orientation. 

Thus, this paper is arranged in the following sections: in Section I1 the equations 
used in our method are briefly presented and results corresponding to three different 
elongations for the main orientations are shown. In Section I11 theoretical results for 
spherical harmonic coefficients of the PCF are given in comparison with available 
simulation data. The dependence of the PCF on density for L* < 1.0 is also studied 
in this Section 111, and finally Section IV contains a short discussion of our results. 

2 DEPENDENCE O F  THE CORRELATION FUNCTIONS O N  THE 
ORIENTATIONS 

2.1 

Our system is formed by hard spherocylinders of axis length L and diameter c 
interacting with a potential defined by: 

The pair correlation function (PCF) 

u(p(R,,,  0 1 ,  d) = 03 if P < rJ (la) 

u(p(Rlz, ol, 0,)) = 0 if P > Q (1b) 

where p is the shortest distance between the axes of the cylindrical part of sphero- 
cylinders. L* is defined as L* = L/a. Vis the volume of the spherocylinder and the 
packing fraction g is defined as q = nV; n being the numerical density of the system. 
Elongation and reduced density for all the systems considered in this paper are in 
Table 1. 

Table 1 

L* I.0 0.6 0.6 0.3 0.3 

tt 0.3 0.3 0.2280 0.3 0.1740 

Reduced lengths and densities corresponding to the systems studied. 
L' = L/u and q = nV, where V is the volume of the spherocylinder. 
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The solution of the OZ equation with PY equation closure (PY equation) gives 
the numerical values of the PCF g, DCF c, and background correlation function y, 
where y and g are related by: 

and the Percus-Yevick closure is given by 

c(R12, 0 1 ,  0 2 )  = g(R12, 0 1 9  ( 3 2 )  - Y(RI2, 01, 0 2 )  (3) 
where, as usual, P = (kT)- ’ ,  k is the Boltzmann’s constant and T is the Kelvin 
temperature. For hard spherocylinders these formulas take a particular simple 
expression: 

Y = g  i f p > a  ( 4 4  

y = - c  i f p < a  (4b) 

where the explicit dependence of functions on positions and orientations through 
p has been suppressed for sake of clarity. 

Details on the algorithm for resolution have been given elsewhere’ and we shall 
only remark here that an initial value for y is necessary and an iterative procedure 
must be used. The closer to the final solution, the faster is the convergence. To speed 
up this convergence, we choose as initial solution for a given density the final results 
for a previous lower density if the elongation does not change. To build an initial 
input function, y,,, close to the final solution for a system with L* < 1, we assume 
that the correlation function for this system should have intermediate values between 
those of a hard sphere system (L* = 0) and a system of L* = 1 at  the same reduced 
density. The PCF of a hard sphere system is the radial distribution function (RDF) 
calculated from the PY equation7. The PCF for a system with L* = 1.0 and q = 0.3 
has been obtained in the paper I. Then, the PCF of these two systems are combined 
to obtain a good initial solution for y .  We have found that a reasonable first input 
solution could be obtained, assuming that the pair effective potential for L* = 0.6, 
w ~ , ~  could be written in the way: 

= 0.40, + 0.60, ( 5 )  

where coo and 0, are, respectively, the pair effective potential for L* = 0 and L* = 1. 
Thus, we could write from the relation between o and g the first input function, yii), 
as : 

(6) y‘l) 0.4 0 . 6  
I N . 0 . 6  = Y O  Y l  

By a similar argument we could write: 

(7) y‘” 0.7 0.3 
I N . 0 . 3  = Y O  Y l  

for L* = 0.3. 
In any case, the direct iteration does not converge and a linear combination 

between the input and output function of a cycle must be taken as input function 
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I I 1 I r 1 

4.0 7 
Pi. 

I lo 
Figure 1 Pair correlation function for head-to-tail orientation at 1 = 0.3, L* = 1.0, -- L* = 0.6, 
L* = 0.3. 

for the next cycle: 

y&+ l )  = cIY$LT + ( 1  - a)yg (8) 
where = 0.2. 

The numerical PCF results for the three considered elongations at the same 
reduced density v] = 0.3 are shown in Figures 1 to 4 for the four main orientations. 
The values of the PCF at the contact for the main orientations are displayed in Table 
2.  

First, we compare the functions obtained with the RDF of a hard sphere system 
at v]  = 0.3 calculated from the PY equation. The contact value for hard spheres 
for this density is g (0)  = 2.2557 and this value is smaller than anyone in the Table 
2.  The first minimum for hard spheres is located at r/cr = 1.7 and the corresponding 
RDF is gmin = 0.860. For the three lengths and all the main orientations considered 
in this paper the first minimum appears at larger r/a and the PCF are always deeper 
than for a hard sphere system. 
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PERCUS-YEVICK EQUATION FOR HARD SPHEROCYLINDERS 11 221 

Figure 2 Pair correlation function for parallel orientation at 4 = 0.3, L* = 1.0, ~~ L* = 0.6, - 
L* = 0.3. 

As a second aspect, we study the dependence on elongation for each particular 
orientation. There are two remarkable different behaviors: for parallel (P) and crossed 
(C) orientations, the contact PCF decreases as elongation does it. However, for head 
to tail (HT) and T orientations, the contact PCF increases as the elongation decreases. 
This behavior does not agree with that shown in the simulations by Nezbeda and 
Smith' but it does with the results from the zero and first order RAM perturbation 
theory which they present8. The RAM theory also implies that y(R, , ,  wl, w 2 )  is 
independent of the polar angle, 4,*,  namely the predicted PCF for parallel and 
crossed orientations are the same. Nevertheless, this approximation is not considered 
in the solution of the integral equation and, in fact, we obtain different contact values 
for different orientations for every L* > 0. Table 2 also shows that when elongation 
decreases the value of the contact PCF tends to be independent of the orientation 
as one could intuitively expect. 

Finally, we would like to comment that angular dependence of the PCF at the 
same density has the same features for L* < 1 as those pointed out in I for L* = 1. 
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Figure 3 Pair correlation function for crossed orientation at q = 0.3, 
L* = 0.3. 

L* = 1.0, -- L* = 0.6, ~ 

The contact-values for parallel and crossed orientations are systematically 1a.rger than 
those for T and head to tail orientations, and these two latter have similar values 
for the complete distance range. Therefore, we can conclude that even for small 
elongations the preferred orientation of a linear molecule is parallel if strong 
multipolar forces are not present’. This fact is well-known for molecules as N ,  with 
L* N 0.3. 

2.2 

The behavior of the DCF for parallel and crossed orientations is shown in Figures 
5 and 6, respectively. Concerning the dependence on elongation for head to tail and 
parallel orientations, it is observed that the DCF values at r = 0 are nearly the same. 
The values of the DCF for the crossed and T orientations at r = 0 are clearly different 
and decrease as the elongation decreases. All the DCF increase monotonically with 
r and no plateau is noticeable for T orientation and small elongations. Several crosses 
between the DCFs appear in Figure 6 and this fact and the different contact distance 

The direct correlation function (DCF) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



s.0 

9, It) 

4.0 

3.0 

PERCUS-YEVICK EQUATION FOR HARD SPHEROCYLINDERS I1 

I 1 - 

223 

Figure 4 Pair correlation function for T orientation at q = 0.3, - .  - L* = 1.0, -- L* = 9.6, __ L* = 0.3. 

for each orientation causes the complex dependence of the PCF at contact (= - DCF 
at contact) discussed above. The same systematic differences between head to tail and 
parallel orientations, and between T and crossed orientations, reported in I are 
observed and as we pointed out' this difference can be considered as an estimation 
of the error in our algorithm. 

3 NUMERICAL RESULTS FOR THE SPHERICAL HARMONIC 
COEFFICIENTS OF THE PCF 

The PCF for a linear molecule can be written as": 
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Table 2 

L* = 1.0 L* = 0.6 L* = 0.3 

gHT(r) 2.5419 2.9709 3.0405 
gP(d 5.3374 4.3260 4.2490 
SC(') 4.4202 4.1369 3.9683 
gT(r) 2.6110 2.9068 3.2003 

Values of the contact PCF for the main orientations and 
different elongations. All systems correspond to q = 0.3. 

where wi = (Oi, q5i) denote the polar angles determining the orientation of the 
molecular axis of the molecule i. gl ,r . , rn(R 2) are the well-known spherical harmonic 
coefficients (SHC) of the PCF and Yl,  rn(wi) are the spherical harmonics. 

Equation (9) can be inverted to give the SHC in terms of the PCF as: 

g1.I,,rn(Rl2) = 4 Ion lo' {01g(~12, w 1 , 0 2 ) ~ 1 ,  -rn(o1, o )~* ,rn(oz~  4 1 2 )  

x d cos(0,)d cos(Q,)d4,, (10) 

where 412 = 42 - I$~.  
Equation (10) allows the computation of the SHC using the PCF previously 

calculated by the integration of the PY. The angular coordinates in Eq. (10) are 
related with those defined in I by: 

Q l  = Q , ,  (1 1) 

4 1 2  = 8 1 2  (12) 

(13) 
where the angles a, B and 19 in the right hand side have been previously defined in 
the Figure 2 of paper I. 

SHC in the Eq. (10) are numerically evaluated using the Conroy's method' ' for 
multiple integration. In this method the integral is approximated by a sum of the 
integrand function computed in M selected points. We have used 6044 integration 
points. The functions in these points have to be obtained by interpolation because 
we only have numerical tables of PCF. As we reported in I, linear interpolation on 
R is enough to give good results. For the angular variables, we use the same 
interpolation formula that in I, namely: 

YK U, P, 4 = Y ~ R )  + (y,(R) - yHT(R)) sin 0 + (YAW - yp(R))  sin u 

cos 0 ,  = cos 812 cos(Q,, + U 1 2 )  

+ (YfAR) - y,(R)) sin B (14) 
Since we have only a few orientations, mostly 18, the error coming from this 

interpolation may be important for some SHC but we were not able to find an 
alternative satisfactory way. 
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I 

0.0 0.5 1.0 r/u 
Figure 5 Direct correlation function for parallel orientation at q = 0.3, ~. - L* = 1.0, - - L* = 0.6, 
L* = 0.3. 

In order to complete our comparisons, we have also simulated a few SHC for the 
systems of the Table 1 with q = 0.3. SHC have been evaluated as averages over a 
large number of configurations of 108 hard spherocylinders generated by a Monte 
Carlo method". As usual, we set up the initial spatial configuration corresponding 
to a face centered cubic lattice. Initial orientations were partially disordered to speed 
up the eq~i l ibra t ion '~  and periodic boundary conditions were used. Each new 
configuration in a MC tun was formed by simultaneous random shifts in the position 
and the orientation of a single particle. Translational and orientational parameters l4 
were monitored through the complete M C  runs to ensure sampling over equilibrium 
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I I 

0.0 0.5 1.0 

Figure 6 Direct correlation function for crossed orientation at 1 = 0.3, L* = 1.0, -- L* = 0.6, - 
L* = 0.3. 

configurations. The system typically reached equilibrium after 5. lo6 moves and about 
the same number of moves were necessary to get the averages sampling every 20 trial 
moves per particle. About half of the moves were rejected in every run. 

Figures 7 to 10 show the four first SHC comparing them with simulations for the 
three elongations considered. At a given constant elongation the agreement is 
qualitatively good for all coefficients except for g220(1). Qualitatively means here that 
the positions of the first maximum or first minimum in Figures 7, 8 and 10 are well 
predicted but not the corresponding SHC values. The discrepancies are smaller for 
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5.0 

gp(r) 

4.0 

3.0 

20 

1 .O 

0.0 
r/a 

1 .o 2.0 3.0 
Figure 11 
q = 0.2280, -..- L* = 0.3 and q = 0.3, 

Pair correlation function for parallel orientation -- L* = 0.6 and ‘I = 0.3, ~ L* = 0.6 
L* = 0.3 and = 0.1740. 

and 

the coefficient gOo0(r)  which represents the distribution function of the geometrical 
centers. Moreover, available simulation data exhibit an increase for the first maximum 
in gOo0(r) as the elongation decreases but the corresponding theoretical values are 
practically independent of elongation. The coefficients g200(r)  and gZz1(r) show a 
similar behavior for simulated and theoretical values but the extreme intensities agree 
poorly. Simulation and theoretical results for the coefficient g220(r )  are considerably 
different. This coefficient is usually worst predicted by the different approximate 

One can conclude from the dependence of the coefficients on L* and 
their comparison with simulation data that our theoretical results are better, in 
general, for intermediate elongation and this is specially true for the coefficient gOo0(r). 
Integrals containing PCF or its coefficient gOo0(r) are used to calculate thermo- 
dynamic functions16 and some errors are probably cancelled up to L* < 0.6 where 
the differences between simulations and theory can be compensated each other. 
However, this is not the case for L* = 1 where the integral equation systematically 
overestimates the value of gOo0(r) for a long range of r .  Similar results were found 
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using accurate perturbation t h e ~ r i e s ’ ~  and also using a different algorithm of solving 
the OZ equation with the PY closure6. 

Finally, we can use the results of four systems of Table 1 to analyze the dependence 
of the correlation functions of density at constant orientation when L* < 1.0. We 
have found that this dependence is essentially the same as in the case L* = 1 studied 
in paper I for every orientation. Figure 11 shows the PCF for parallel orientations 
and these four systems. For every orientation the contact PCF increases as density 
does. Moreover, the first minimum becomes deeper and move towards smaller r / u  
values at larger densities for every orientation. The second maximum is nearly 
irrelevant and does not change with density and the contact values for parallel and 
crossed orientations are larger than those of T and head-to-tail orientations for every 
density. 

4 CONCLUSIONS 

Taking into account the results of this paper and those of the paper I, we think that 
we can sketch some definitive conclusions about the solution of the PY equation for 
hard spherocylinders: 

a)  The results of the PCF obtained up-to-now show that the structure in the fluid 
increases monotonically with density and in a more complicated way with the 
elongation. 

b) From our results is predicted that nonpolar linear molecules tend to adopt 
parallel configurations. 

c) As the elongation decreases all the orientations tend to be equally probable and 
the values of PCF tend towards the RDF of a system of hard spheres at the same 
reduced density. 

d) The approximations of Fischer’’ and Lombardero and Lago”, and RAM8 
theories that assume the same value for parallel and crossed orientations are only 
expected to be reasonably good for small elongations. Similar results have been 
obtained by Perera and Patey6 for systems with L* > 1. 

e) The comparison of the theoretical spherical harmonic coefficients with simula- 
tion data is better for gOo0(r) which mainly accounts for the spatial, not the 
orientational structure. The agreement is poorer for the other coefficients, specially 
for g220(r) ,  which include the angular structure. It can be thought that the PY closure 
used to solve the OZ integral equation for hard spherocylinders provides a better 
description for the radial than for the orientational part of the PCF. Because our 
method is not restricted to this closure, we are presently working in other alternatives. 

Finally, the best agreement of gOo0(r) for intermediate elongations (L* N 0.6) 
explains why the usual perturbation theories give good results up to  about this elon- 
gation. Integrals containing PCF for smaller elongations must approximately vanish, 
but for larger elongations these errors are not compensated. However, we should tell 
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that a recent perturbation t h e ~ r y ' ~ . ' ~  seems to give good results at least up to 
L* 'Y 0.8 and we were not able to find any explanation for this fact. 
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